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Abstract - Convergence problems for both voltage- and 
charge-controlled models of MOSFET gate capacitances are 
often a limiting factor of CAD tools. In paper, an idea of 
exponential smoothing of model discontinuities is proposed. 
The method is demonstrated by smoothing the discontinuity 
of Meyer’s model at zero drain-source voltage. The updated 
model is tested on Q-flop circuit by an advanced algorithm. 

I. INTR~DU~TI~N 

The gate capacitance models have been defined precise- 
ly concerning gate-source voltage. However, models need 
a refinement for a case of large drain-source variation-it 
will be demonstrated on a CMOS flip-flop circuit analysis 
by author’s C.I.A. (Circuit Interactive Analyzer) program. 

II. DEFINITION OF A NECESSITY TO ENSURE CONVERGENCE 

The SPICE3 program has implemented Meyer’s voltage 
controlled model, the programs of PSPICE family contain 
the same model and Ward’s charge controlled model in se- 
veral levels, especially for BSIM class. In most cases, the 
models have not problems relative to gate-source voltage 
changes. However, if drain-source voltage exchanges sign 
during transient analysis, convergence problems can occur. 
Such problems are described in [2, p. 1971 for the Meyer’s 
model and in [2, p. 1981 for the Ward’s models. For that 
reason, a requirement for an updated model can be defined 

for the Meyer’s and Ward’s model, respectively. 

III. DEFINITION OF DISCONTINUITIES OF CLASSICAL MODEL 

The discontinuity problem can well be defined on classi- 
cal Meyer’s model that is discussed in a simple form in [ 11 
and in a quite complete form in [2]. However, the actdal 
implementation in the SPICE program slightly differs from 
[2]. Hence, let define the updated model in a complete way 
with the discontinuities to be under consideration. The de- 
finition for normal mode (VDs > 0) is divided to 5 regions: 

l for vGs - v,, 5 -4s (accumulation region): 
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c,, =o, 
c,, = 0, 
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l for 0 < vGs - v,, 5 vDs (saturation region): 

c,, = 0, 
2 

cGS =. 5 cox ) 

c,, = 0, 

l for vGs - v,, > VDs (linear region): 

(4) 

(5) 

(6) 

c,, = 0, 
vGS -van -vDS 

2(vGS -vm)-vDS 
7 (7) 

vGS - v,, 
2(vGS -vm>-vDS * 

V,, voltage is part of static model and acts as a boundary 
between regions of the weak and strong inversions, & is 
the surface inversion potential, and C,, is determined by 
oxide permittivity and thickness, effective channel length 
and channel width-see Fig. 1: 
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Fig. 1. Updated Meyer’s gate capacitance model in C,, units. 

We can now easily check that Meyer’s modified model 
defined in (3) to (8) is continuous relative to gate-source 
voltage. However, if drain-source voltage is changing sign 
whereas the gate-source voltage remains unchanged then a 
discontinuity might arise. For a lucid example, suppose the 
gate-source voltage fulfills the condition for the saturation 
region (6), i.e. 0 < V,, - V,, I V,, -the discontinuities 
now arise for both source and drain gate capacitances 

Vli$+CGs = Vliz-CGn = fCoX, (9) DS DS 

lim Co, = v,, +o- lim Con = 0 vos +o+ (10) 

because the role of CGs and C,, exchanges for VDs < 0 
in the SPICE models. In other words, it is natural to expect 

lim C vD,~ GS = zso 'GD (11) 

for symmetrical device and that condition is not kept-(6). 
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Fig. 2. Simplified schema of probed traction of a large CMOS 
integrated circuit. 

IV.SOLVINGTHEPROBLEMBYEXPONENTIAL SMOOTHING 

The problem of discontinuities (9) to (11) can easily be 
resolved by means of the exponential factor 

FG = exp(- nsmzvT) for VDs 10 (12) 

and 

where %nooth is a new model parameter with unit default 
value and VT is thermal voltage. For all the Co, and Con 
capacitances in (3) to (7), new ones are defined by 

C& =F, cGS + cGD 

2 +(l-F~)cm~ (14) 

c’ GD = FG 
CGS + &D 

2 + O- F~)c~~ (1% 

- for symmetrical devices, again. Note that the CGu 
capacitance has not that discontinuity problem and there- 
fore is left without any changes (CA, = C,,). 

In other words, the C& and C&n capacitances have the 
equal values for vns -+ 0 (which must be physical reality 
for symmetrical devices) now and the original unmodified 
values for IvDsl > VT. 

It is also evident that the 50/50 dividing used in (14) and 
(15) can be generalized for other ratio of gate-source and 
gate-drain capacitances. Moreover, the analog smoothing 
method is usable for three partitionings of Ward’s model. 

V.TESTOFTHEDISCONTINUITYE~PONENTM SMOOTHING 

A radio frequency CMOS flip-flop circuit has appeared 
as a sophisticated test of convergence. Only a part in Fig. 2 
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Fig. 3. The CMOS flip-flop circuit used as a sophisticated test of convergence -the numbers represent the SPICE “area” factors. 
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Fig. 4. The CMOS negative-or circuit that processes output of 
the two flip-flop circuits. 

from the whole integrated circuit is necessary for testingL 
That circuit has caused serious convergence problems in 
SPICE analyses because it contains the transistors which 
alternate the sign of drain-source voltage during transient 
simulation. Hence, the analyses were tried by CIA. kernel. 

A. About the Probed CMOS Subcircuits 

The subcircuits are drawn in Fig. 3 and Fig. 4. Each of 
the transistors is labeled by SPICE area factor. Threshold 
voltages and other parameters of static model are determi- 
ned for all the transistors from a technology parameter set. 

Gate capacitors are defined by the equations (3) to (8) 
for the classical model and by updates (12) to (15) for the 
smoothed model-both are determined by (8) with oxide 
thickness 50 mn and several parameters of the static model 
modifying the voltage V,, and effective channel length. 

The capacitance part of model is complemented by three 
(slight) gate overlap capacitors and-of course-by junc- 
tion capacitors with zero-bias bottom capacitances 0.2 pF 
and zero-bias perimeter capacitances 0.05 pF. 

B. About the C.I.A. Integration Algorithm 

There is a derivation in [2] that some integration scheme 
(trapezoidal here) in conjunction with Meyer’s model cau- 
ses incorrect results for circuits with isolated nodes. There- 
fore, an algorithm choice for solving the circuit system 

f(e), 40 t> = 0 (16) 
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Fig. 5. Results of the test circuit-the first flip-flop circuit is 
switched by clock signal, the second is switched by the first one. 

is also important for successful implementation of a model. 
A brief review of the C.I.A. algorithm is also necessary to 
explain advantages of the new model assessing its claims. 

The C.I.A. algorithm uses backward scaled differences 
as an extrapolation (predictor) or interpolation (corrector) 
tool-they are defined for an n step by recursive formulae 

@)s = 2 
(ywx = (+jw)x -a(“-lt!P-l~,~l, i=l,..., IE,-l-2, 

(17) 
n n n 

where X~ = a( t, ) , Ic, is an order of polynomial interpola- 
tion in the running integration step and 

(-j(O) = 1, 

aw 
n =(Y (i-l) t, -"t,-i (18) 

n 
cl-1 - tn-*-i 

) i=l ,...,lc,+1. 

A prediction of values for a next chosen time tn+i z$?~ is 
determined by the extrapolation using the differences (17) 

which is a more convenient form of Newton interpolation 
polynomial used here in an explicit form. 

A correction of the values for tn+l is determined using 
modified Newton iterations (limited in each of the integra- 
tion steps by the algorithm’s parameter “maxit”) 

with the factor yn+l is to be derived from an implicit form 
of approximation of derivatives, which gives the formula 

TABLE I 
CONTRAST OF CLASSICAL AND SMOOTHED MODEL CL~S 

(21) 

After solving the system (20), a&‘; and 5.$$ are updated 

,$--j = x;$ + Az$, 
* (j+l) ’ (j) 

(22) 
%a+1 = %+1 + yn+l Arct$ 

but if an indication of divergence during the iterations (20) 
is detected then the logarithmic damping can be used 

for all the m components of Az$!~ before using the (22). 

C. About the Results With Classical and Smoothed Models 

The TABLE I summarizes main differences between the 
analyses of the test circuit by the algorithm of subsection 
B. As expected and got by SPICE analyses too, the result 
by using classical models shows several nonconvergences 
-here, for 200 MHz clock signal with 250 ps rise and fall 
times, 5 nonconvergences occurred even for maxit = 200. 

Moreover, the convergence problems cause a number of 
logarithmic dampings (23) to be used for classical model 
and (which is the worst) a quantity of LU factorizations of 
the Jacobian in (20) to be executed is considerably higher. 

VI. CONCLUSION 

The exponential smoothing for discontinuity elimination 
usable for both Meyer’s and Ward’s gate capacity model is 
suggested and tested on a sophisticated CMOS RPIC. 
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